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Abstract— Software testing plays a vital role in software 
development especially when the software developed is 
mission, safety and business critical applications. Software 
testing is the most time consuming and costly phase. 
Prediction of a modules info fault-prone and non fault prone 
prior to testing is one of the cost effective technique. Predicting  
a safe module as faulty increases the cost of projects by  more 
cautious and better-test resources allocation for those 
modules, whereas prediction of  faulty  code as fault free  code  
end up in under-preparation and may leave modules untested  
this may cause accidental failure and lead towards massive 
loss . In this research, we present a novel fault prediction 
technique that reduces the probability of false alarm (pf) and 
increases the precision for detection of faulty modules. The 
general expectation from a predictor is to get very high 
probability of false alarm (pf) to get more reliable and quality 
software product. We have taken embedded systems software 
for this study and the goal is to predict as many faulty modules 
as possible. In this paper we apply a supervised discretization 
for pre-processing and clustering based classification for 
prediction of a modules info fault-prone (fp) and non fault-
prone (nfp) modules. To evaluate this approach we perform an 
extensive comparative experimental study for the effectiveness 
of our method with benchmark results for the same embedded 
software’s. Our fault prediction model produces better results 
than the standard and benchmark approaches for software 
fault prediction. 
Results from our proposed model significantly decreases 
probability of false alarm (pf) down to 9% while increasing 
precision and balance rates at 68% and 79% respectively. 

 
Keywords Software fault prediction, supervised discretization, 
and software metric. 

I. INTRODUCTION 

The demand of highly reliable and secure system is 
increasing day by day. To fulfill these demands by the ever-
increasing power of computing devices, systems are 
growing complex. Due to the complexity of these systems, 
effort and cost incur in development is increasing. Software 
complexity is the main source of failure and potential 
hazards. High quality software within allocate budget 
requires a careful planning and cost effective use of testing 
resources. Mission critical or safety and business critical 
system needs more reliability and therefore requires more 
testing time and resources.  

Testing phase is the most expensive, time and resource 
consuming phase of the software development lifecycle 
requires approximately 50% of the whole project schedule 
[1, 2]. So an effective and intelligent test strategy can 
minimize the time of testing by using resources efficiently. 
Various methods for minimization of testing effort, 
inspections [3], manual software reviews or automated 

models [4], [5] are proposed. A panel at IEEE Metrics 2002 
[6] concluded that manual software reviews can find 
approximately 60% of faults. Automated models proposed 
for fault prediction are useful tools for software 
organizations and significantly better in terms of fault 
detection performance, compared to other verification , 
validation and testing  activities [5][17][18]. These 
automated models uses static code attributes such as Lines 
of Code (LOC) and the McCabe/Halstead complexity and 
other software attributes that can be easily extracted from 
source code repositories even for large systems.  

Software fault prediction uses various method-level static 
code software metrics such as Halstead , Mc- Cabe metrics 
etc. to categorize modules and predicting them either fault-
prone(fp) or non-fault prone( nfp) modules by using 
classification model derived from the data of  projects. In 
software fault prediction problems, we have X = {x1, x2, … 
xn}where x represents software module that is characterized 
by software metrics  and Y = {fp,nfp} ,where an unknown  
system S  predictive model transforms  from instances X to 
predicted classes Y; Y = S(X). Prediction models based on 
software metrics, can estimate number of faults in software 
modules as well as which module is faulty. So the 
predictive models are easy to use  and faster to run for 
highlighting fault-prone modules compared to inspections  
[4],[5],[7].Fault predictors models are useful tools for 
software organizations to manage their testing resources 
effectively through focusing on fault-prone software 
modules to mprove software quality. Many researchers 
have already worked for fault prediction model and various 
software metrics and techniques like linear regression, 
decision trees, neural networks and Naive Bayes 
classification have been analyzed [5][8][9]. 

This study specifically includes projects of white goods 
manufacturer from the Turkish software industry for 
embedded systems domain. Embedded systems are used in 
many industries such as white goods, automotive, 
telecommunications and aerospace [10]. We produce the 
experiments on these embedded system software’s with 
cluster based classification in order to compare it by Ayse 
et al.[23] framework for the same embedded systems. We 
use the same pd, pf, precisions and balance in order to 
analyze the effectiveness of our framework. Our results 
indicate that cluster based classification used after 
supervised discretization process   may increase the 
prediction performance significantly. We implemented 
high-performance fault prediction model based on 
classification via clustering for benchmarking. We  
compared  the results of our model  with ensembles  
methods  used in [23] ensemble (Ens1) which includes 
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ANN, Voting Feature Intervals (VFI) ,Naïve Bayes and 
other ensemble( Ens2)  which uses  Naive Bayes and VFI 
algorithm . 

In the following section, models used for defect 
prediction are explained. After describing the experimental 
design, results, and conclusions will be given. 

II. RELATED WORK  

Researchers have used various methods such as 
statistical analysis, regression, Genetic Programming [11], 
Decision Trees [12], Neural Networks [13], Naïve Bayes 
[5], Case-based Reasoning [14], Fuzzy Logic [15] and 
Logistic Regression [16] for software fault prediction.  

Elish et al. [17] investigated the performance of Support 
Vector Machines (SVMs) and found SVM better than, or at 
least is competitive against the other statistical and machine 
learning models in the context of four NASA datasets. They 
compared the performance of SVMs with the performance 
of Logistic Regression, Multi-layer Perceptrons, Bayesian 
Belief Network, Naive Bayes, Random Forests, and 
Decision Trees. They used correlation based feature 
selection technique (CFS) to down select the best predictors 
out of the numbers of independent variables in the datasets. 
Catal et al. [18] investigated effects of dataset size, metrics 
set, and feature selection techniques and found Random 
Forests provides the best prediction performance for  large 
datasets and Naive Bayes is the best prediction algorithm 
for small projects. Tomaszewski [19] have conducted 
Statistical models vs. expert estimation for fault prediction 
and found statistical techniques performed superior to 
locate software fault than an expert estimations approach 
stating that” When it comes to comparing both methods we 
found that statistical models outperformed  expert 
estimations”. 

Gondra’s [20] experimental results showed that Support 
Vector Machines provided higher performance than the 
Artificial Neural Networks for software fault prediction. 
Quah [21] used a neural network model with genetic 
training strategy to predict the number of faults, the number 
of code changes required to correct a fault, the amount of 
time needed to make the changes and he proposed new sets 
of metrics for the presentation logic tier and data access tier. 
Turhan et al. [22] analyzed the effects of preprocessing of 
software defect data from NASA with PCA ,subset 
selection and weighted Naive Bayes and concluded that 
either pre-processing software defect data with PCA or 
using weighted Naive Bayes should be preferred rather than 
subset selection for Naïve Bayes models.Menzies et al. [5] 
reported that Naive Bayes with logNums filter achieves the 
best performance in terms of the probability of detection 
(pd-71%)and the probability of false alarm (pf-25%) values  
which is are much larger than their  prior results of mean 
(pd, pf)=(36%, 17%). They also stated that there is no need 
to find the best software metrics group for software fault 
prediction because the performance variation of models 
with different metrics group is not significant and the 
choice of learning method is more important. Almost all the 
software fault prediction studies use metrics and fault data 
of previous software release to build fault prediction models, 
which are called ‘‘supervised learning” approaches in 

machine learning community.   There have been 
discussions on finding the best classifier for fault predictors. 
Lessmann et al. [35] argued that their 15 best performing 
classifiers were statistically indistinguishable from each 
other in terms of the area under the receiver operating 
characteristic (ROC) curve. The authors did not use any 
filtering or transformation techniques. Instead, they used 
the algorithms on the original data to measure their 
effectiveness on detecting defect-prone modules. Ayse et al 
[23] used multiple predictors (classifiers) to produced better 
results for locating defects they used an ensemble of 
classifiers to predict defects in embedded software and 
achieved probability of detection (pd-76%) and the 
probability of false alarm (pf-22%)  for ensemble (Ens1) 
which combines ANN, Voting Feature Intervals(VFI) and 
NB and probability of detection (pd-69%) and the 
probability of false alarm (pf-17%) by  ensemble (Ens2) 
which uses only Voting Feature Intervals(VFI) and NB. 

We used embedded data from promise repository [25] 
which is an open source repository for fault data. Therefore; 
all projects used in this study are available online. So, this 
work can easily be repeated, improved or refuted by other 
researchers [24][22] .We present a defect prediction model 
based on cluster based  classification for embedded and 
mission critical software results reveal probability of 
detection (pd-76%) and the probability of false alarm (pf-
9%) which is statistically significant by the earlier models. 

Earlier, embedded software’s in systems was only used 
to control the hardware. However, the purpose of embedded 
systems has grown  with the  ever-increasing power of 
computing given a rise  in the demand [26].This increase in 
demand makes the software more sophisticated , complex 
and hence, more important. Unlike general software 
systems, reliability standards always for embedded system 
remain very high [48]. Embedded software systems are 
reactive in the nature because they have been used in real-
time applications and have real time constraints and are 
often safety-critical. Their failures can result in the loss of 
human life. So, the impact of residual defects in embedded 
software would be much higher than defects in other types 
of software. To decrease the cost of fixing defects during 
later stages of development life cycle software developers 
and testers have to ensure the reliability of software. Tight 
schedules and increasing cost of testing, on the other hand, 
enforce limited testing which may prevent identifying 
severe faults in the software. This dramatically affects 
quality attributes, such as timeliness, reliability and 
dependability [27]. Therefore, developers in the embedded 
software domain need additional techniques to preserve the 
reliability of software. As early warning mechanisms, 
defect predictors would be very helpful for practitioners in 
order to improve product quality in embedded systems in a 
shorter time and with fewer resources, compared to other 
verification, validation and testing activities [28]. In this 
research we use static code attributes as predictor variables. 
A complete list of these attributes is available on line in the 
Promise repository [24]. Static code attributes used in 
defect prediction have been accepted as valuable metrics by 
many researchers, for example [5][30].  
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III. EXPERIMENTAL DESIGN  

From an industrial perspective, software managers aim to 
decrease their testing efforts while decreasing fault rates, 
thereby producing high quality real time systems. We 
observed that cluster based classifiers would detect 76% of 
the faulty modules with precision of 68%. Also the cluster 
based classification decreases the false alarms rates. In 
commercial applications, companies need to employ cost 
effective oracles, since an increase in false alarms would 
waste inspection costs by guiding testers through actually 
safe modules. Therefore, in this paper, our objective is 
“building a learning-based fault predictor for embedded 
systems that would decrease false alarms while producing 
high detection rates’’. 

We used a cluster-based classification framework in 
which fault-prone and not fault-prone modules are   
grouped into clusters. In our experiment we use supervised 
discretization as preprocessing technique. We first 
discretized the data using entropy based supervised 
discretization to divide the continuous attributes   into the 
range intervals.  It makes learning more accurate and faster. 
After supervised discretization we have applied clustering 
technique on processed data to build and effective fault 
prediction model. We evaluated this model on embedded 
software and then compared  this method  with a recent 
study which is based on ensemble classification for the 
same embedded softwares [23]. 

As indicated by Shull et al. [43], replications help the 
software engineering researchers to address internal and 
external validity problems. These types of studies also lead 
the research community to build a solid knowledge about 
the influence of conditions on the experimental results and 
observations. In this study, we observed a recent study on 
defect predictors for embedded system by Ayse et al [23] 
and we have reproduced better results  via new techniques 
in order to find the better approaches  for  fault prediction . 

 
Lessman et al. [35] reported that data preprocessing or 

engineering activities such as the removal of 
noninformative features or the discretization of continuous 
attributes may improve the performance of some classifiers 
[35]. For example, Menzies et al. report that their Naive 
Bayes classifier benefits from feature selection and a log-
filter preprocessor [5]. 

Discretisation is the transformation of a continuous 
variable into a discrete space, grouping together multiple 
values of a continuous attribute, and partitioning the 
continuous domain into a finite numbers of non-
overlapping intervals. The task of discretizing an input 
attribute for classification problems is usually divided into 
supervised discretisation, when knowledge interdependency 
between the class level and attribute values  is used for the 
discretization process and unsupervised discretization, 
when the class values of the instances are unknown or not 
used. The methods for unsupervised discretization are 
equal-width and equal-frequency binning. The equal width 
divides the range of values of a numerical attribute into a 
pre-determined number of equal intervals. The equal 
frequency divides the range of values into a pre-determined 
number of intervals that contain equal number of instances. 

Supervised algorithms are maximum entropy [37], 
Patterson and Niblett [39], statistics- based algorithms like 
ChiMerge [40] and Chi2 [41]. 

Fayyad & Irani developed a concept of entropy based 
partitioning in [36]. We have used entropy based [46][36] 
discretization  before classification. 

Fayyad & Irani's approach was developed in the context 
of decision tree learning that tries to identify a small 
number of intervals, each dominated by a single class. They 
first suggested binary discretization, which discretizes 
values of continuous attribute into two intervals. The 
training instances are first sorted in an increasing order, and 
the midpoint between each successive pair of attribute 
values is evaluated as a potential cut point. The algorithm 
selects the best cut point from the range of values by 
evaluating every cut point candidate. For each evaluation of 
a candidate, the data is discretized into two intervals and the 
entropy of the resulting discretization is computed. In a 
given a set of instances S ,a feature A, and a partition 
boundary T, the class information entropy of the partition 
induced by T, denoted E(A,T;S)is given by   

 
E(A,T;S)=    S1/S Ent(S1 )+S2/S Ent(S2 ) 
 
For a given feature A, the boundary Tmin which 

minimizes the entropy function over all possible partition 
boundaries is selected as a binary discretization boundary. 
This method can be applied recursively to both of the 
partitions induces by Tmin until some stopping condition is 
achieved. Fyyad and Irani make use of minimal descriptive 
length Principle to determine stopping criteria for their 
recursive discretisation process. Recursive partitioning 
within a set of value S stops if 

 
Gain(A,T;S)<(log2 (N-1))/N+(∆(A,T;S))/N 
 
Where N is the number of instance in the set,S, 
 
Gain(A,T;S)=Ent(S)-E(A,T;S), 
 

    ∆(A,T;S)=log2(3
k-2)-[k.Ent(S)-k1.Ent(S1 )-k2.Ent(S2 )], 

and ki is the number of class labels represented in the set S. 
Since the partitions along each branch of the recursive 
discretisation are evaluated independently using this criteria, 
some areas in the continuous space will be partitioned very 
finely whereas other which has relatively low entropy will 
be partitioned coarsely. 
Once the discretisation process has been completed, the 
discretized data is used by cluster based classification 
algorithm for building the predictive model. Clustering is 
one method to find most similar groups from given data, 
which means that data belonging to one cluster are the most 
similar; and data belonging to different clusters are the most 
dissimilar. Any clustering algorithm such as the hard c-
means, mountain clustering algorithms can be used. We 
have used the Simple k-means clustering algorithm that 
uses a fixed number of clusters.  The number of cluster 
made by our algorithm is equal to the number of classes of 
data i.e. two one for faulty and other for not faulty. In our 
approach we have not used the class labels for cluster 
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building .Finally after building clusters mapping is done on 
the basis of lowest error. A particular class label can be 
associated with at most one cluster. To overcome the 
sampling bias we have used  M*N-way cross validation 
where both M and N are selected as 10 [44]. We create 10 
stratified bins: 9 of these 10 bins are used as training sets 
and the last one is used as the test set. We randomize the 
dataset M = 10 times and create N = 10 sets in each 
iteration. We apply clustering based classification algorithm 
on the preprocessed embedded fault dataset. Finally we 
have compared our result with the Ens1 and Ens2 used by 
[23] for fault prediction of embedded systems. The pseudo 
code of the model is shown below in Fig. 1. 
 
Procedure Evaluation data Learning (data, scheme) 
Input: data - the data on which the learner is built, AR3, 
AR4, AR5] 
Learners- The learning scheme. 
[Cluster_based_classification ]  
Output Result [D_pd, D_pf, D_prec,D_bal] = D_predictor 
on TEST pd,pf, precision and balance over M*N way cross 
validation. 
Preprocessing = {supervised discretisation} 
M=10;N=10; 
FOR each data  
D_Data = apply supervised discretisation //discretization of 
data  
// construct predictor from D_Data 

For 1=1 to M  
T=Generate N parts of each D_Data 
For J =1 to N do 
Test=T[j] 
Train=T- T[j] 
 Model=Apply learning scheme on Train  
 D_Prediction =Apply Model to test 
End for 

End  for 
//Evaluate predictors on the test data 
    [D_pd ,D_pf, D_prec, ,D_balance ] = D_ predictor on 
TEST 
End for 
 

Figure 1: Algorithm for Software fault prediction 

IV. DATA SOURCE 

We use data which is publicly available in the Promise 
Data Repository [25]. The three embedded projects AR3, 
AR4, AR5 are from Turkish white good manufacturer 
Software Company. Each data set is encompassed of 
several software modules, together with their static code 
attributes and associated corresponding number of faults. 
After metric and bug data extraction from software 
repositories , modules that contain one or more bugs were 
marked as fault prone (fp), and where no bug were reported 
those modules were treated as non fault prone (nfp). The 
fault data sets which are taken from promise repository 
includes LOC counts, several Halstead attributes, McCabe 
complexity measures as well as various other static code 
attributes. Individual software metric feature per data set, 

together with percentage faulty modules and some general 
descriptions are given in Table 1. 

 

 TABLE 1: DATA SET USED IN THE STUDY 

Source  No of 
Module  

Features  LOC % 
Faulty 

Language  

AR3 63 29 5624 12.7 C 
AR4 107 29 9196 18 C 

AR5 36 29 2732 20 C 

 
A. Performance Measures  

The accuracy and performance of prediction models for 
two-class problem, defective or not defective is typically 
evaluated using a confusion matrix. A confusion matrix 
contains information about actual and predicted 
classifications done by a classification system.  In this study, 
we used the commonly used prediction performance 
measures: probability of detection (pd), probability of false 
alarm (pf), precision (prec), balance (bal) to evaluate and 
compare prediction models quantitatively. These measures 
are derived from the confusion matrix. 

A confusion matrix 
 

 Actual Faulty Module Not Faulty 
Module 

Predicted    

Faulty Module  TP(True 
positive)  

FP (False 
positive) 

Not Faulty 
Module 

 FN (False 
negative) 

TN (True 
Negative) 

 
 
False alarms, pf, should be 0, meaning that the predictor 
should never label a fault-free module as faulty. In general, 
an increase in pd would also increase pf rates since the 
model triggers more often to achieve the ideal case [5]. To 
see how close our estimates are to the ideal case, we use a 
balance metric, which is the Euclidean distance between the 
ideal point and where we are on the ROC curve in reality. 
Precision is also known as correctness. It is defined as the 
ratio of the number of modules correctly predicted as 
defective to the total number of modules predicted as 
defective.  
 

pd =TP/(TP+FN) 
pf =FP/(FP+TN) 

 
 
 
 

 
The higher the precision, the less effort wasted in testing 
and inspection. It has a strong relation with pd and pf, such 
that when pd is fixed for a dataset, pf rate is controlled by 
precision and the class distribution of the data [5] 

FPTP

TP


Precision 
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V. RESULTS 

A novel approach Cluster based classification (CBC) 
method used in this research to improve the performance of 
fault prediction methods to detect more defects and to 
produce as low false alarms as possible. We compare CBC 
with the model proposed on embedded datasets (Aysre et al. 
2011), AR3, AR4, and AR5 to validate its performance. We 
found that our results are   outperforming with their study, 
so we can confirm that the CBC approach is worth using in 
the context of embedded software.  In Table 2, the 
prediction performances of CBC and the model of Aysre et 
al. [23] are presented. Comparison of CBC with Ens1 
which is consists of ANN, NB, VFI, and Ens2 (ANN,NB), 
in embedded datasets on the basis of pd(probability of 
detection). From the results, we could argue that CBC 
achieves good results for embedded datasets. Our model 
outperformed in comparison with the results of Ens1 of  
Aysre et al. 2011 in terms of pf. on average from 22% to 
9% .When we analyze our cluster based classification for 
all embedded projects, the average performance is (76%, 
9%) in terms of (pd, pf).  

CBC also outperformed of Ens2 which is improved 
ensemble by   Aysre et al. 2011 in terms of pf on average 
from 17% to 9% and in pd on average from 69% to 76%. 
Ens1 consist if of ANN, NB and VFI algorithms. The 
strength of these three is combined to achieve better 
predictions by creating ensemble Ens1. So it is a good 
practice to check individual performances of the algorithms. 
Thus, we compared our model with the result of each 
algorithm to evaluate each of the algorithms, whose results 
pd, pf, precision and balance are illustrated Tables in 2, 3, 4 
and 5 for all embedded projects.  

Our model decreases false alarms by 13%, and hence 
increases precisions by 22 % in comparison with Ens1, 
Mann–Whitney U tests show that these rates of our models 
are significantly high. Therefore we can conclude that our 
model is useful and is outperforming for the embedded 
systems. Mann–Whitney U test shows that the pf rates of 
two models are significantly different when we compare pf 
with the results of [23] for Ens1 for all embedded projects.  

 
TABLE 2: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2 

(AYSRE ET AL. 2011), IN EMBEDDED DATASETS ON PD (PROBABILITY OF 

DETECTION) 

 
Dataset Our Ens1 ANN NB VFI Ens2  

AR3 0.714 0.62 0.12 0.62 0.62 0.62  

AR4 0.55 0.8 0.45 0.75 0.80 0.70  

AR5 1 0.85 0.50 0.75 0.87 0.79  

Avg 0.76 0.76 0.36 0.71 0.76 0.69  

 
This shows us in our case, defect prediction using an CBC 
model would definitely be helpful  and outperformed  than 
ensemble  Ens2  and ANN, NB, for detecting as many 
defects as possible and, hence, reducing testing effort. It 
would correctly classify defective modules and guide 
developers to fewer modules to inspect rather random 
reviews. 
 

TABLE 3: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2 

(AYSRE ET AL. 2011), IN EMBEDDED DATASET ON PF (PROBABILITY OF 

FALSE ALARM) 
 

Dataset Our Ens1 ANN NB VFI Ens2  

AR3 0.018 0.2 0.31 0.32 0.14 0.13  
AR4 0.115 0.36 0.43 0.32 0.43 0.29  

AR5 0.143 0.1 0.43 0.10 0.21 0.10  

Avg 0.092 0.22 0.39 0.25 0.26 0.17  

 
From the results, of Table 3 we could argue that CBC 
achieves good results for embedded datasets. We 
outperform the results of Aysre et al. 2011 in terms of pf on 
average from 39% to 9% for ANN. In pf Mann– Whitney 
tests: CBC is significant outperformed than Ens1, Ens2 and 
also from constitute of Ens1(ANN,NB,VFI). Therefore we 
can conclude that our model is decreasing false alarm and is 
useful for the embedded systems, performing better than the 
Ens1 consists of ANN, NB and VFI algorithms [23]. 
 
TABLE 4: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2 

(AYSRE ET AL. 2011), IN EMBEDDED DATASET ON  PRECISION 
 

Dataset Our Ens1 ANN NB VFI Ens2  

AR3 0.83 0.31 0.05 0.22 0.39 0.41  

AR4 0.52 0.34 0.19 0.35 0.30 0.36  

AR5 0.667 0.71 0.25 0.68 0.54 0.68  

Avg 0.675 0.45 0.17 0.42 0.41 0.48  

 
 
Table 4shows the comparison of CBC with Ens1, ANN, NB, 
VFI, and Ens2 (Aysre et al. 2011) using precision. In 
precision Mann– Whitney tests: CBC is significant 
outperformed than Ens1 .Therefore we can conclude that 
our model is useful for the embedded systems and is 
performing better than the Ens1 consists of ANN, NB and 
VFI algorithms [23].Also our model is outperforming than 
the all constitute of Ens1(ANN,NB,VFI) and Ens2. 
 

There is significant increase in precision rates from 45% 
in Ens1, 48% in Ens2 to 67.5% in our model. 
Also it decreases false alarms by 13%, and hence increases 
precision by 22 %. From table 5 Mann–Whitney U tests 
show that the balance rates of two models are significantly 
different. Therefore we can conclude that our model is 
useful and is outperforming for the embedded systems. 
 
TABLE 5: COMPARISON OF CBC WITH ENS1, ANN, NB, VFI, AND ENS2 

(AYSRE ET AL. 2011), IN EMBEDDED DATASET ON BALANCE 
 

Dataset Our Ens1 ANN NB VFI Ens2  

AR3 0.79 0.69 0.34 0.64 0.71 0.72  
AR4 0.67 0.70 0.50 0.71 0.66 0.70  

AR5 0.898 0.81 0.53 0.80 0.82 0.81  

Avg 0.79 0.73 0.46 0.72 0.73 0.74  
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We validated the performance of CBC on  embedded  
datasets to compare with both Ens1 and En2 the model of 
Ayse et al. (20011). From  Table 3,4, and 5, it is easily seen 
that the CBC significantly improve false alarms,  precision 
and   balance rates for  embedded system fault prediction. 
As from result  Tables, Ens1 produces (76%, 22%, 45%, 
73%) in terms of (pd, pf, prec, bal) on embedded  datasets, 
whereas our CBC approach produced (76%, 9%, 67%, 79%) 
respectively which in term significantly reduces false 
alarms by 13%  from Ens1 and 8 % from Ens2 .It also  
increases the precision by 19% from Ens1 and 18% from 
Ens2. Therefore, CBC is much better for embedded system 
software in terms of the confidence (precision) and false 
alarm of predictions.  

VI. CONCLUSIONS 

We presented a CBC method and process for software 
fault prediction. We have conducted several experiments in 
order to compare the performances of our model. The 
effectiveness of the method is demonstrated using several 
embedded dataset from promise repository. We employed 
statistical methods to assess the validity of our results; we 
have conducted the Mann–Whitney U test to evaluate 
whether the changes in pf, precision and balance can be 
significantly validated. Statistical tests prove the validity of 
our results in terms of false alarms, precision and balance. 
We conclude that discretization on software defect data 
with Fayyad & Irani’s [36] supervised discretization should 
be preferred and CBC approach perform better than Ens1or 
Ens2 [23].  The time complexity of ensemble methods, 
increases rapidly with dimensionality of the data and is 
constructed by constitution of various algorithms. But our 
method uses a single CBC technique and is also good for 
huge data. From a software practitioner’s point of view, 
these results are useful for detecting faults before 
proceeding to the test phase. In this sense, test resources can 
be managed more efficiently.  The contributions of this 
research are two folds: In empirical studies replications are 
very important to improve, refute, and validate the results 
of others [5, 45]. Ayse et al. donated data to the promise 
repository which is publicly available to encourage other 
researchers to repeat, improve or refute their study; our 
work is the first response to their call. This research is not 
only a replication study, but also provides an effective 
software fault predictor model for embedded dataset. 

 On all projects, our model detects 76% defective 
modules while producing 9% false alarms. Our model 
significantly improves the precision from 48% to 67%.It 
also manages to improve the balance rates from 74% to 
79% on average (all projects). Furthermore we will attempt 
to use intelligent computing   for data preprocessing or 
activities for the removal of non informative features to 
improve the performance of software fault prediction 
models. 
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